
CREATE: Clinical REcords Analysis Technology
Ensemble

Alex Dekhtyara, Skylar Durstb,a, Vadim Kaganb, Andrew Stevensb, V.S.
Subrahmanianc,b, Joshua Terrellb

aDepartment of Computer Science and Software Engineering, California Polytechnic State
University, San Luis Obispo

bSentiMetrix, Inc
cDepartment of Computer Science, University of Maryland

Abstract

In this paper, we describe the work that enabled us to win the psychiatric symp-
tom severity prediction challenge that constituted Track 2 of the 2016 Centers
of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-Scale and
RDOC Individualized Domains (N-GRID) Shared Task in Clinical Natural Lan-
guage Processing. In order to predict the severity of psychiatric symptoms on
a 4-point scale, we used a novel stacked machine learning architecture in which
(i) a base data ingestion/cleaning step was followed by the (ii) derivation of a
base set of features defined using text analytics, after which (iii) association rule
learning was used in a novel way to generate new features, followed by a (iv)
feature selection step to eliminate irrelevant features, followed by a (v) classifier
training algorithm in which a total of 22 classifiers including 2 new classifier
variants defined by us were used on seven different data views, and (vi) finally
an ensemble learning step, on which ensembles of best learners were used to im-
prove on the accuracy of individual learners. All of this was tested via standard
10-fold cross validation on training data provided by the N-GRID challenge or-
ganizers after which the best three algorithms were selected for submission to
N-GRID’s blind testing, with the best of our submitted solutions garnering an
overall final score of 0.863 according to the organizer’s measure. All 3 of our
submissions placed within the top 10 of all 65 submissions.

Keywords: clinical data analysis, natural language processing, N-GRID
challenge

1. Introduction

When diagnosing patients seeking help for mental health-related issues, there
are two critical factors: correctness and timeliness of the diagnosis. The correct
diagnosis allows the clinical psychiatrist to devise and implement the appropri-
ate treatment. The timeliness of the correct diagnosis means that the appropri-
ate treatment can start as soon as possible. Correctly assessing the severity of

Preprint submitted to Elsevier February 2, 2017

a patient’s psychological symptoms poses a challenge with substantial negative
consequences if estimated incorrectly. If the severity of a patient’s condition is
underestimated, the patient will not receive proper treatment, and the condition
may deteriorate; if the severity of the condition is overestimated, the patient
may wind up receiving potentially harmful medications.

Initial psychiatric evaluations of patients therefore play a crucial role in both
the timeliness and the correctness of the diagnosis. Such evaluations often con-
tain a plethora of information, including the patient’s mental health history,
the family’s history of mental conditions, and a detailed report of the patient’s
present symptoms. Some of this data is naturally generated in a well-structured
form: e.g. as patient’s answers to a series of self-assessment survey questions.
Other parts of the evaluations come as unstructured text: doctor’s notes, pa-
tient’s verbatim comments, and so on.

Track 2 of the CEGS N-GRID 2016 Shared Task in Clinical Natural Lan-
guage Processing challenged the participants to analyze the initial psychiatric
evaluations of a group of patients for the purpose of predicting the severity of
their symptoms. In this paper, we describe the methods used by our team to
win this challenge, by leveraging known natural language processing (NLP) and
machine learning methods into a single pipeline we called CREATE (Clinical
REcords Analysis Technology Ensemble) shown in Figure 1.

Figure 1: Architecture of the CREATE Framework

Our CREATE framework is a pipeline that includes several innovations. We
start by taking the raw (noisy, cluttered) data provided to N-GRID challenge
participants and use a data ingestion phase to ingest and clean it. Second, we
apply a host of sophisticated methods to extract a “base” set of features for
each clinical record from the ingested data. We expand this set of features via
a variety of methods, adding 8198 new features to the original 86. Third, we
apply association rule mining to learn approximately 345,000 association rules
[18, 33], and then trim them to a set of 628 predictive rules. Though association

2

rules have been widely used in the literature for classification, we use them to
generate 628 new features, one for each association rule, which to the best of
our knowledge, is a novel use. Fourth, with the new total of 9284 + 628 = 9912
features we engage a set of feature selection operations in order to eliminate
useless features. Fifth, we train a total of 22 classifiers, each on seven different
subsets of features (data views). Of these, two are novel adaptations of existing
Random Forest [19, 9] and AdaBoost [16] classifiers. All of these classifiers
build on top of the association rule classifiers developed earlier, which is why
we call them “stackable” in our framework. On our final step, we train different
ensemble classifiers consisting of the subsets of best individual learners in order
to improve the final accuracy of detection of patient condition severity. In
both the fifth and sixth steps, we do extensive k-fold cross validation and move
forward from there to make our final predictions. This is not the first time
predictors have been stacked — in the past, we developed stacked regressors
for predicting airline market share and demand [2] as well as for predicting the
number of hosts in a given enterprise that will be attacked by a given malware
[27].

The rest of the paper is organized as follows. In Section 2 we discuss prior
work in this area. Section 3 explains the details of Track 2 of the CEGS N-
GRID 2016 Shared Task in Clinical Natural Language Processing (which we,
for brevity, refer to as “the N-GRID challenge” throughout the rest of the pa-
per) and provides an overview of the data we have received from the challenge
organizers. Section 4 provides an overview of CREATE’s six-step approach to
the N-GRID challenge. Because Step 1 (ingestion and cleaning) is straightfor-
ward, albeit tedious, we do not describe it. Section 5 describes the features
we used, while Section 6 describes how we selected just 628 of 345,373 associ-
ation rules generated by an off-the-shelf association rule mining engine called
FP-Growth[18], and by adapting Quinlan’s C5 decision tree induction algo-
rithm [32, 33] for association rule mining. Section 7 shows how we determined
which features (original and extended) were irrelevant. Section 8 describes how
we engaged in an intensive classifier training and hyperparameter optimiza-
tion procedure on seven different data views of our dataset, which included the
adaptations of the well-known Random Forest and AdaBoost classifiers for our
purpose. Finally, in Section 9 we describe how we put together a variety of
ensembles made from the best-performing individual learners, to improve the
final prediction accuracy. We conclude in Section 10.

2. Related Work

We limit discussion of related research to two categories: work on analysis
of clinical records in the medical domain, primarily concentrating here on NLP
approaches; and emerging machine learning and NLP technologies. In addition
to these, our work on this project used a wide array of classification [45] and
association rule mining [18] techniques, and traditional methods for text parsing
and POS tagging [39]. We used the Python scikit-learn [29] and nltk [6] toolkits,

3

the Stanford parser and Part of Speech Tagger [39], and the Snowball stemmer
for English[7].

SentEmotion. The SentiMetrix team (consisting of the co-authors of this paper)
became interested in this challenge due to prior work SentiMetrix has conducted
in the domain of clinical diagnoses for mental health conditions [4, 20]. Founded
in 2007, SentiMetrix is a data science and social analytics company offering a
variety of solutions to address the “big data” needs of commercial companies
and government agencies.

Through its work on past projects [15, 21, 40] SentiMetrix has built an array
of technology-based solutions, focusing on the near real-time analysis of large
quantities of complex data in multiple languages. Prior projects applied these
solutions to data analytical challenges in the areas of national security, elections,
marketing, and medicine. We built upon our prior work on detecting mental
health disorders such as Depression, PTSD and TBI from patient notes[4, 20].
This system, known as COPTADs, is a text-based classification engine that was
developed in cooperation with psychologists. Leading surveys had identified a
set of signals that a victim of depression might have: for example, isloation from
others. We previously built a classification engine on top of the Stanford Parser
[39] to extract these signals, and then a second layer to extract emotions such
as anger or fear. The third layer generates a confidence value for each of the
disorders that COPTADs is configured to recognize.

Feature Selection using Association Rules. K. Rajeswari demonstrated the use
of using Apriori rule mining in order to select features with high significance [35].
First, the authors mined a set of rules with a small k value. The second step was
removing all features that did not appear in at least one rule. The third step
was to re-run the Apriori but on a much larger k. Finally, when training the final
classifier, they included only the features that were an antecedent in at least one
rule. The higher k value omits some useful association rules, but should take
an order of magnitude less time to complete, due to the large reduction of n
candidate rules. The author noticed that on a dataset attempting to classify
the risk of heart disease, that computation time was cut by a full two orders of
magnitude with this procedure.

Word2Vec. In Spring 2016, Google released its Convolutional Neural Network
(CNN) deep learning package TensorFlow [1], and an information retrieval/natural
language processing framework called Word2Vec [25] based on analysis of large
quantities of text using TensorFlow.

The Word2Vec release contained a dataset of 3 million instances trained
on a corpus of 100 billion words represented as vectors of 300 latent features
computed by the TensorFlow-trained CNN using a large Google News text corpus
as the training set. The information captured by the Word2Vec vectors relates
to the co-occurrences of different words in the same contexts. Through empirical
studies, Google showed that the Word2Vec vectors representing individual words
contain enough information to represent synonymy (vectors of synonyms are
similar), as well as a number of other semantic concepts.

4

Med2Vec. Building on top of Mikolov’s Skip-Gram model, Choi et al. sought
to create a deep learning document embedding strategy [12]. They had two
datasets of 3 and 5 million documents with a combined total almost 30,000
medical codes that acted as a natural clustering. Med2Vec is constructed in a
similar method as Skip-Gram Word2Vec, but treats sequential visits from the
same patient as if they were sequence of words in a sentence. Compared to
Skip-Gram Word2Vec and GloVe, Med2Vec achieves lower, better normalized
Mutual Information Gain scores on Medication and Procedure, implying that it
builds embeddings that are better clustered for those tasks [31]. While SVD of
document text performed better than Med2Vec, SVD was demonstrated to have
far lower interpretability [17].

Ensemble Construction. Constructing ensembles was a key step in winning both
the N-GRID competition as well as others, such as Kaggle. However, construct-
ing ensemble rules by hand can be time-consuming or miss optimal solutions.
Cortes et al. describes an online machine-learning algorithm called ESPBoost
that accepts hundreds of potential “experts” and the correct label [13]. ESP-
Boost uses coordinate descent to reduce the Hamming loss which finds a locally
performant ensemble without enumerating all possibilities [5, 22]. ESPBoost did
best on large problems with a large number of experts.

3. The Challenge

The specification of Track 2 of the CEGS N-GRID 2016 Shared Task in
Clinical Natural Language Processing (also called the RDoC for Psychiatry
Challenge) presented the goal of this particular track of the challenge as:

“Determine symptom severity in a domain for a patient, based on
information included in their initial psychiatric evaluation. The do-
main has been rated on an ordinal scale of 0-3. There is one judgment
per document, and one document per patient.”[43]

Research Domain Criteria (RDoC) is a framework for facilitating the study
of human behavior, both normal and abnormal in various clinical domains.
The RDoC provided the data, originally collected by Partners Healthcare Inc.
and the Neuropsychiatric Genome-Scale and RDoC Individualized Domains (N-
GRID) project at the Harvard Medical School [43]. The data was released to
the challenge participants under a strict set of Rules of Conduct and the Data
Use Agreement.

As shown in Table 1, a total of 649 records were released, broken into a
training set of 433 files and a test set of 216 files with no ground truth — the
latter was released only two days before the submissions were due. The initial
release of the 433 patient records was broken into two categories: a suggested
training set of 325 files, and 108 files called annotated by 1. Since the contest
organizers discouraged us from using the records from the annotated by 1 set as
training set data, we focused most of our training on the 325 record training
set.

5

Total number of records released 649
Number of records in suggested training set 325
Number of records in additional training set 108
Number of records in test set 216

Table 1: Overview of released data.

Value Meaning
0 ABSENT
1 MILD
2 MODERATE
3 SEVERE

Table 2: The scale of the target Valence variable in the N-GRID challenge training set data.

Each record, originally stored in a single XML file, represented the informa-
tion from the initial psychiatric consultation of a single patient. For each record
in the training set the challenge organizers supplied the ground truth about
the severity of the patient’s psychiatric condition. This information was stored
in a single feature of the data files called Valence. Table 2 shows the scale on
which the patients’ conditions were evaluated. The judgment contained in the
Valence field came from a clinical expert and was based solely on the symptoms
and medical, social, mental health, and family history captured in the provided
data.

The XML files provided by the challenge organizers contained both struc-
tured data, which documented demographic information, mental health history,
education, employment, financial status, family history of mental health, medi-
cal history, prescription and recreational drug use and a few other categories of
information; and unstructured, free-form textual data, which documented self-
reported symptoms and attending psychiatrists’ notes on the patient and their
condition. The data was in its raw, originally recorded form, and contained
numerous typos, a lot of missing attributes, inconsistent use of abbreviations,
and freeform text. The data was also anonymized.

Figure 2 shows a notional (not real) record created by us to illustrate the
nature of the data — it contains no information from the N-GRID dataset.
However, this notional record can give the reader an idea of the type of infor-
mation that the teams had access to while working on the challenge (as an aside,
we note that the actual records contained significantly more data in them).

Table 3 contains a rough breakdown of the types of features found in the
original data. Table 4 contains the list of features from the original data that
were deemed by our team to be free-form text.

The results of the challenge were evaluated using the a variant of the Mean
Absolute Error (MAE) metric. Given a vector v = (v1, . . . , vn) of ground truth
values and a prediction vector p = (p1, . . . , pn), the MAE of the prediction is

6

Type of feature Number of features
All features 102
Demographic information 3
Harming Others Or Self 4
Symptoms of Mental Health Issues 18
Drug, Caffeine and Alcohol Use 5
Family History 4
Symptom Denial 8
Independence of Daily Activities 9
Marital Status and Abuse 3
Employment and Finances 4
Owns Firearms 1
Legal History 1
If Underage, Legal Guardian 2
Military History 2
Appearance 14
Mental Health 18
Physical Health 6

Table 3: Breakdown of features in the original N-GRID 2016 challenge Track 2 dataset by
category.

Free-form Entries
Chief Complaint (Patient’s Own Words)

History of Present Illness and Precipitating Events
Previous Treatments

Prior Medication Side-effects
Current Medication
Childhood History

Interpersonal Concerns
Education

Family Living Situation
Protective Factors

Risk Factors
Actions Taken
Formulation
Level of Care

Table 4: List of free-form text fields found in the original data for Track 2 of the N-GRID
2016 challenge.

7

RAW DATA

Name: John Doe

Age: 42

Sex: Male

Referred by Emergency Services

Has difficulty remembering if he has taken prescription drugs.

Accidental overdose.

Referral Notes: Patient exhibits short-term memory loss - blood tests

reveals mixed alcohol with prescription. Stayed overnight.

Found bruises on shoulders - possibly from falling.

DEPRESSION: YES

OCD: No

PANIC: Yes

Prescriptions:

Advil (3 times a day)

Formulation:

Patient has history of anxiety and bipolar.

Recommendations:

Change medication to Alpazolam.

Require additional visit in 2 weeks.

Figure 2: A synthetic record illustrating the type of clinical medical records data contained
in the dataset released for Track 2 of the N-GRID challenge.

computed as

MAE(p,v) =
1

n

n∑
i=1

|pi − vi|

The MAE was altered by the challenge organizers so that the score was in
the range of [0, 1], where 1 indicated a perfect score. The new MA-MAE, Macro-
Averaged Mean Absolute Error, measure was computed by splitting the set of
records into four categories (one per ground truth Valence value), computing the
MAE for each of the four subsets independently, and combining the computed
MAEs into a weighted sum. The normalizing factors for each of the component
MAE values are the highest possible errors that can be achieved for a data point
with the given Valence value (3 for Valence=0 and Valence=3, and 2 for Valence
=1 and Valence = 2). To make the computed value correspond to the higher
is better intuition, the computed weighted sum was subtracted from 1. The
formula for computing the N-GRID Challenge version of MAE is:

8

MA MAE(p,v) = 1−
(MAE(P0,V0)

3 + MAE(P1,V1)
2 + MAE(P2,V2)

2 + MAE(P3,V3)
3)

4

Every team participating in the challenge was allowed to submit up to three
final guesses. Each guess was essentially a vector of predicted valences for each
case history from the provided test set.

4. Overview Of CREATE

Figure 1 describes the 6 parts of CREATE. We provide brief overviews of the
individual components of CREATE below.

1. Data Ingestion - a fairly straightforward, if tedious process of converting
the XML data files provided to us into case × feature matrices. We limit
our discussion of this step to what was presented in Section 3, when we
discussed the provided dataset.

2. Feature Extraction - described in Section 5. We started our work on pre-
dicting the Valence variable by careful extraction of existing features from
the raw XML data provided to us by the organizers. After starting with
the features present verbatim (i.e., as unique elements) in the released
dataset (see Table 3) we defined several other features to generate a single
overarching dataset.

3. Development of Association Rule-based Features - described in Section 6. In
this stage, we extracted a set of 345,373 Class Association Rules from the
above dataset and then eliminated redundant ones to generate a total of
628 in all. For each retained Class Association Rule we included a binary
feature into our dataset.

4. Feature Selection - described in Section 7. We next devised a set of tests
to identify irrelevant features; a feature that failed all of the tests was
eliminated.

5. Classifier Development & Training - described in Section 8. We devised
seven different views of our data: each view containing a specific subset of
the full set of features. We put together a battery of 22 machine learning
algorithms, including two novel adaptations of Random Forests and Ad-
aBoost that we developed. We trained the 22 classifiers on our seven data
views and selected the best runs for the ensemble learning step.

6. Ensemble Learning - described in Section 9. On the last step, we evaluated
ensembles of best-performing individual classifiers. We used both simple
majority/plurality ensemble schemes, as well as more complicated voting
techniques to see which, if any, provided the best solutions. At the end,
a number of simple ensembles over subsets of our classifiers emerged with
accuracies that were clear improvements over the best individual classi-
fiers, and produced MA-MAE scores over 0.86. From those, we selected
three predictors that we submitted to the N-GRID challenge organizers.
We were glad and proud to discover that one of our submissions had the
highest overall MA-MAE among the submitted solutions.

9

5. Step 2: Feature Engineering

To analyze the provided data, first we had to transform the original XML
data into a tabular, textual format. Each XML file was structured so that it
contained all the patient informaiton in a single CDATA block, along with a
single tag describing the Valence. Manual examination of several XML files
revealed the underlying structure of the patient records (see Figure 2). We
have identified portions of the patient record that we elected to represent as
free-form text features (see Table 4). These were primarily the restatements of
symptoms experienced by the patients recorded from their own words, plus notes
and observations of the psychiatrists conducting the evaluation of the patients.
Most other content from XML files are represented as key-value pairs, with both
keys and values relatively straightforward to determine and extract. During the
extraction process, we were able to reduce the 102 features (identifiable in the
XML files as individual prompts) to 86 features, which we term the “original”
N-GRID dataset features.

The parser’s output was a CSV file with each row containing information
from a single case history (ie, XML file) and each column containing information
about a single feature: textual or structured. The initial breakdown of features is
described in Table 3. Not every XML document had values for all the extracted
features; in fact, some features were present only in a handful of records, and
other features were often omitted from records. Another data quality issue
worth noting is the relative frequency of typos (which could have come either
from the process of digitization of the records, or from the initial medical records
themselves). Regular expressions were used to reduce the amount of error in
boolean and categorical entries. Some examples include catching different ways
to say No: N, Missing or Not. Other expressions simplified synonymous medical
codes or shorthand in categorical features, such as ld for a learning disability. For
free-form text, no typo detection or conjoined word detection was used.

We have then proceeded to enhance the original N-GRID dataset with a wide
range of additional features. Below we discuss the nine different ways in which
we augmented our feature set. Table 5 contains the summary of our feature
enhancement efforts.

Cumulative Scores. Our initial investigation of the original features extracted
from the raw data unveiled groups of related features, typically with “yes”/“no”
values, where each individual feature was rarely set to “yes” and no relationship
with Valence appeared to exist. Moreover, the overall number of such features
set to “yes” in a single patient case history seemed to be in some relationship
with Valence. In such cases, we added a new feature, a cumulative score of “yes”
values in a group of features, to the dataset.

For example, the original features contained a relatively rich arsenal of sub-
stances that a patient could abuse or consume, from readily-available substances
such as tobacco, caffeine, and alcohol to a wide range of recreational drugs. We
identified all such features, and added a new feature Cumulative Substance Use
which stored a count of substances which the patient admitted to using. Similar

10

Approach Explanation # New Features
Original (Munged) Features Features taken from original data 86
Cumulative Scores Aggregations of like features 62
Medications Individual medications taken by patients 47
Association Rules ARs from features to Valence 628
Unigrams Representations of textual data 8033
Word2Vec vectors Representations of textual data 300
SentEmotion Sentiment and emotion extraction from text 49
cTAKES Medical symptom tagging 658
LIWC Topic detection and POS counts 93
Commonality of Patient A measure of how typical a patient is 5
TOTAL 9912

Table 5: A list of approaches to enhancing the feature set for the N-GRID Challenge (Track
2) dataset.

cumulative count features were created for a few more groups of variables: num-
ber of psychiatric review conditions deemed positive for the patient, number of
“abnormal” items from the mental status exam, number of activities the patient
does not perform independently, and more.

The reasoning behind adding such features to the dataset was straightfor-
ward: we saw features which appeared to carry important information, but
which, due to relative lack of positive/abnormal/out-of-ordinary values could
not solely by themselves contribute to the learning of Valence. By creating cu-
mulative count features, we represented the quantitative effects: case histories
with more positive/abnormal responses in those feature columns received higher
counts. This removed some of the sparsity of the dataset.

Extracting Medications. To capitalize on the possibility of using medications in
predicting Valence, we: (i) manually created a list of 47 medications deemed
relevant for patient conditions, complete with alternate spellings and abbrevia-
tions where applicable, (ii) developed a Medication Extractor that analyzed the
input data and produced the list of medications mentioned in it, and (iii) cre-
ated a dataset of medication mentions with 47 columns corresponding to the
medications our Medication Extractor tool was tracking.

Emotion Features. SentiMetrix’s SentEmotion is a web service, developed as
part of the COPTADS project [4, 20] (see also Section 2) that extracts the
intensity of emotions such as anger, fear, depression, anxiety, stress, etc. from
freeform text. In addition to labeling the overall sentiment of a text fragment
[42] and individual emotions expressed in the text (anger, fear, depression, etc),
the system outputs a confidence value, which expresses the level of confidence
the system has in the presence of the emotion. We ran all textual information
for each of the records through SentEmotion and added 49 new mental health-
related features.

11

Simple Representations of Textual Information. At our initial examination of
the provided data, we identified a number of features whose contents constituted
free-form text. We considered using the free-form text from each of the features
as a separate input into any text analysis procedures we were employing. How-
ever, at the end, we decided to concatenate the contents of all free-form features
into a single free-form text feature, and conduct all text analysis on it. This
resulted in the richest possible text being processed for each patient record.

We investigated a number of way to represent textual data in our dataset.
The first, more straightforward approach we took resulted in the following steps,
which are a part of our the SentiMetrix Common Pipeline framework for data
processing and data ingestion.

• Removal of dates and integers from dataset into SMXDATE and SMXNUM
features

• Stopword removal using the suggested english stopword lists in NLTK [6]
and Scikit-Learn [29]

• Stemming using the Snowball Stemmer [7]

• Term-Frequency Inverse-Document Frequency [41, 3] of unigram features
for each surviving word stem/term

Word2Vec for Textual Information. Our second approach used Word2Vec method-
ology1 [25] introduced recently by Google. to represent each word found in each
freeform text as a vector of 300 features. We used Google’s own collection
of Word2Vec vectors trained on the Google News corpus by Google. Despite
N-GRID data containing a lot of specialized technical terms from psychiatric do-
main, and proper names such as names of medications, 96.8% of tokenized text
contained in the N-GRID training set was also found in the Google’s Word2Vec
dataset with a coverage of 78.4% of unique words. Examples of words not cov-
ered are typos such as “weopons”, “ibuprofin” or “bipolaar”; conjoined words
such as ”employment.He”; dates such as ”8/17/86”; and medical jargon such as
an exact dosage for a patient.

To represent the text from individual patient records, we took the vector
representations of each term found in the free-form text in the patient’s record,
and computed the mean vector. This is the Word2Vec equivalent of the tradi-
tional Bag of Words model, and acknowledged as a naive baseline to construct
a ParagraphVector by Mikolov and Le [26]. This procedure added 300 features
to our dataset. We used gensim to load the binary Word2Vec word-to-vector
file [34].

cTAKES Features. As mentioned in Section 2, Apache cTAKES is a framework
for extracting a variety of information from medical records. cTAKES looks for
terminology related to medical symptoms, mentions of medications, body parts,

1https://code.google.com/p/word2vec/

12

procedures, diseases, disorders, and a few other categories of information. For
each patient record, we ran the concatenated free-form text extracted from the
record through cTAKES to collect these signals.

LIWC Features. LIWC, Linguistic Inquiry and Word Count [30], is a linguistic
computerized text analysis tool similar to SentEmotion. LIWC produces 93
signals, which include various low-level Parts-of-Speech analysis such as the
number/frequency of pronouns, semantic features such as if the document has
a positive or negative tone, and basic topic-analysis such as detecting if the
document focuses on home, money, leisure, the past, or friends. We have run
the free-form text extracted from each record, collected all LIWC features, and
added them to our dataset.

Common Value Features. Common Value Features are another form of a cu-
mulative feature, but rather than summarizing logically related features, they
summarizes features that individually have little explanatory power. For exam-
ple most individual observations of a variety of patient behaviors were labeled
with the code ”WNL” which is interpreted as ”within normal limits”. In fact,
most patients had all their observations set to ”WNL”, so a group of seven-to-
eight ”WNL”-valued features formed a very well-defined, but not very interesting
frequent itemset. These very frequent, but essentially benign itemsets give rise
to a large number of useless association rules during the rule generation process.
Since an exhaustive mining process on our dataset is extremely slow for any k
greater than 4, these very frequent itemsets tended both contribute to consume
significant CPU resources while not producing any interesting results.

To reduce the size of our market baskets, we created the concept of a typical
value. We set up five separate ”typicality” thresholds: 51%, 62.5%, 75%, 87.5%,
and 90%. Given a number t from the list above, and given a feature from our
feature set, a specific value of the feature was called t-typical if more than t
percent of all records in the training set contained this value.

We aggregated the notion of t-typicality by introducing five common value
features into the dataset: one per typicality threshold. The common values
feature for threshold t was set to the total number of other features in the
given record which contained t-typical values. These new features allowed us to
quickly see whether a specific patient evaluation record yielded rare, atypical,
unusual values for its features.

6. Step 3: Class Association Rules

We decided to see if we could discover some clear dependencies between the
features present in, potentially small, subsets of patients, and the value of their
Valence. To test this, we engaged in the process of mining our feature data for
Class Association Rules.

We constructed a subset of binary and categorical features found in the
data. These primarily included the original features, medication and cumulative
features, and a small handful of features retreived from other sources. With

13

Parameter Value
Minimal Support 20 records
Minimal Confidence 0.6
Maximal Inverse Confidence 0.4
Maximal Negative Confidence 0.4

Table 6: Pruning conditions for Association Rule mining process.

these features, we concentrated on discovery of class association rules of the
form:

F1, F2, . . . , Fk −→ Valence,

where F1, . . . , Fk are conditions on the binary/categorical features. Table 6
shows the parameters for our Class Association Rule search; we pruned away
all rules that did not satisfy them.

We used an existing Python implementation [28] of the FP-Growth 2 [18]
algorithm to perform an exhaustive search for Class Association Rules with
k ∈ {1, 2, 3, 4, 5}. For larger values of k (k = 6 . . . 9) we used C5 [33, 32], which
is non-exhaustive .

The discovered rules went through a rigorous pruning procedure. In addi-
tion to pruning away all discovered Class Association Rules (CARs) that did
not pass the minimum standards shown in Table 6, we also conducted a χ2

test of significance for each discovered CAR (see Section 7 for a more detailed
explanation of the χ2 tests conducted). All CARs that did not pass the χ2 test
at the significance level of p = 0.05 were also eliminated from consideration.
Essentially, failing the χ2 test meant that there are significant reasons to be-
lieve that the CAR is a by-product of individual frequencies of the features it
contained, rather than an actual meaningful relationship between these features
and the Valence variable.

Finally, we performed a Coverage Test as proposed by Li et al [23]. The
purpose of the Coverage Test is to reduce the set of CARs to the ones that
most accurately describe our data while avoiding excessive duplication. First,
we sorted all of our generated CARs by confidence, support and χ2 score from
best to worst. Starting with the first rule, all documents with features in the
antecedent of the rule were marked. Then, we advanced onto the second round
and marked all documents with features in the antecedent of that rule. The
process was repeated until each input record was covered. After a single docu-

2Since the original Python implementation is not actively maintained, SentiMetrix has a
private fork of the repository. SentiMetrix’s has API tweaks that allow the emission of only
Class Association Rules, rather than all Association Rules, cached metrics for aggressive fil-
tering while mining, support Python 3, and utilizes Numpy arrays rather than Python lists for
more compact memory allocation and faster cache coherence [44]. The overall improvements
result in a modest reduction of memory, and a 33% reduction in run-time, while considering
only Class Association Rules reduces the problem size by multiple orders of magnitude. This
is significant, because even with these improvements mining higher k ∈ {4, 5} took days to
complete.

14

Antecedent Valence Support Confidence Neg. Conf.
patient is an inpatient and
currently undergoing SEVERE 22 21/22 (95.45%) 18.25%

addiction treatment

patient NOT taking Aplenzin and
has no history of drug abuse and MODERATE 25 20/25 (80%) 22.06%
suffers from OCD

patient is NOT inpatient and
does not drink alcohol and
is NOT taking Allernaze and
is NOT taking Levothroid and
is NOT taking Cultivate and MILD 73 67/73 (92%) 38.37%
is NOT taking Abilify and
does not suffer from OCD and
has no history of violence and
suffers from depression

Table 7: Examples of discovered Association Rules.

ment has been marked five times, we removed it from future consideration. If
a rule did not “cover”” any considered documents, we discarded the rule. Once
all documents have been marked five times, we discarded all remaining rules.

Altogether, the pruning process reduced the total number of CARs extracted
from the data from 345,373 to 628. For each extracted Class Association Rule,
we added one binary feature to the dataset, which was set to 1 on records where
the antecedent of the Association Rule applied 3. Some examples of the Asso-
ciation Rules we mined during this process are presented in Table 7. The first
two rules were found by the FP-Growth process, and the third by C5.

7. Step 4: Feature Selection

Because we now had thousands of features to consider, we developed a fea-
ture selection procedure that subjected each feature in our dataset to a battery
of tests. Features that failed every single test were eliminated from consideration.
The battery of tests is described below.

Association Rule test. This decision procedure can be boiled down to a simple
statement: keep a feature if it appears in the antecedent of at least one of the
628 Class Association Rules in our dataset.

χ2 test for categorical features. We ran a χ2 test [46] for each categorical fea-
ture against the Valence variable. This test checks whether there are sufficient

3The conclusion of the CAR was not considered, as that would result in leaking the label
information during training, nor could these features be constructed on a hidden test set

15

grounds to believe that a specific categorical feature is associated with another
categorical feature purely by coincidence. We set our confidence estimate at
95% and rejected any categorical feature whose χ2 test yielded a p-value higher
than 0.05. The χ2 test was implemented by using scipy’s chisquare function to
compute the p-value of each categorical feature [10].

ANOVA F-test for continuous features. ANOVA F-tests are used to test the
significance of a regression model[8]. While we used the χ2 test to test for
potential significance of our categorical features, we used the multi-way ANOVA
F-test for our numeric features. For each feature tested, we separated the data
into four subsets, based on the value of the target Valence attribute. We then
randomly sampled from these four groups. We then tested the means and
standard deviations in each of the four subsets to see if they represented similar
or different distributions, and compared them across our multi-way samples to
see if there is a statiscal bias. Similarly to the χ2 test, we set the confidence
level at 95% and rejected any numeric attribute whose ANOVA F-test produced
a p-value of more than 0.05. We uses scikit-learn’s f classif function to compute
the multi-way ANOVA tests [29].

Mutual Information Gain test (MIG). Mutual Information Gain is typically
used in measuring the robustness of clustering methods. In unsupervised prob-
lems, MIG is measured by calculating P(X, Y) - the probability that two
variables X and Y occur in the same cluster - compared to the probability
P(X) * P(Y) of their occurring in the same cluster by random chance. If
there is a clear dependence between the two variables, then the probability of
P(X, Y) will be higher than P(X) * P(Y). Recent research shows that MIG
provides an additional level of feature selection in the context of textual clas-
sification and clustering [48]. In the case of supervised feature selection, we
compare the entropies and distributions of Valence vs. each feature using K
Nearest Neighbors. At the time of the N-GRID Challenge, scikit-learn [29] did
not have a completed implmentation of mutual info classif, but it was in the
process of being developed. We ported scikit-learn’s partial implementation into
our system.

Linear SVM Recursive Feature Elimination. Our final test involved running
scikit-learn’s version of the Support Vector Machine (SVM) classifier with a
linear kernel [14] and observe whether the feature survived the Recursive Feature
Elimination process implemented within it. An advantage of using a linear SVM
to find support vectors is that it provided our system with multivariate feature
selection. In addition, χ2 test and our Class Association Rules only worked
on categorical features, while Mutual Information Gain used a heuristic [48] to
operate on continuous features. The Linear SVM recursive feature elimination
allowed us an additional test on the continuous features in our dataset.

Table 8 contains the overview of the features that survived this process:
i.e., that passed successfully at least one of the tests from the list above. We

16

Feature Category Number of Features
TOTAL 788
Original 30
Cumulative scores 34
Medications 10
SentEmotion 6
cTakes 40
Common Value 5
Word2Vec 34
Unigrams 1
CAR 628

Table 8: Description of the final set of features remaining in our operational dataset after the
feature selection (pruning) step.

make a few observations here about the final shape of the dataset. Only LIWC
did not contribute any features. All other means of enhancing non-textual
features provided meaningful contributions, with cTakes, original dataset, and,
interestingly enough, our cumulative scores accounting for the majority of non-
textual features. All five Common Value features also made it. Our manual work
on documenting medications resulted in 10 out of 47 medication features kept.

Another interesting outcome of this process was an essential depletion of
direct natural language-related features from the dataset. Only 34 out of 300
features that came from Word2Vec were kept.

8. Step 5: Classifier Training and Adaptations

For our next step, we have constructed a battery of 22 different classifiers to
train on the dataset we built on previous steps. Table 9 lists the classifiers we
used on this project. 12 of the 22 classifiers came from scikit-learn. Another five
classifiers came from the internal SentiMetrix implementations primarily devel-
oped prior to the N-GRID challenge, but modified where needed to work with
the data from this challenge. Additionally, we used two neural network learners
from Google’s TensorFlow: their deep neural network implementation; and their
so called deep and wide classifier, which combines neural nets (deep learning)
with Support Vector Machines (wide learning). Finally, two extra classifiers —
XGBoost, the boosted gradient classifier [11], and Quinlan’s implementation of
C5.0 decision tree classifier [33] — were used as well.

Of the 22 classifiers we used two, the Random Forest Regression with Clas-
sification Inference (RF-reg-clf in Table 9, and the SVM-initialized Näıve Bayes
AdaBoost were novel adaptations of the well-known Random Forest [9, 19] and
AdaBoost [16] machine learning techniques. They are described below.

8.1. Classifier Adaptations

Our two novel adaptations of existing classifiers are discussed below.

17

No. Abbreviation Classifier Source
1 MB NB Multinomial/Bernoulli Näıve Bayes scikit-learn
2 Lin-SVM Linear Kernel SVM scikit-learn
3 RBF SVM Radial Basis Function Kernel SVM scikit-learn
4 LogReg Logistic Regression scikit-learn
5 RF Random Forests scikit-learn
6 Adaboost NB AdaBoosted NaiveBayes scikit-learn
7 KNN K-Nearest Neighbors scikit-learn
8 SGD Stochastic Gradient Descent scikit-learn
9 BRBM Bernoulli Restricted Boltzmann Machine scikit-learn
10 RF-reg Regression version of Random Forest scikit-learn
11 RF-reg-clf Train: Regression RF; inference: Classification RF scikit-learn
12 Lin-SVM-reg Regression version of Lin-SVM scikit-learn
13 RBF SVM-reg Regression version of RBF SVM scikit-learn
14 DNN Deep Neural Network TensorFlow
15 Deep & Wide Deep-and-Wide classifier TensorFlow
16 SVM-Init AdaBoost AdaBoost: 1 ropund Linear-SVM, 49 rounds of NB SentiMetrix
17 MI SVR Mutual-Info Feature Boosted SVM SentiMetrix
18 CMAR CMAR (Classifier on Multiple Assoc. Rules) SentiMetrix
19 CMAR SVM CMAR-Boosted SVM SentiMetrix
20 CBA CBA (Classification Based on Associations) SentiMetrix
21 XGBoost XGBoost (scalable gradient boosting) XGBoost
22 C5 C5.0 Decision Tree Classifier RuleQuest

Table 9: All the classifiers that were tried as part of the N-GRID Shared Task Challenge

Random Forest Regression with Classification Inference (RF-reg-clf). Random
Forest is a powerful yet forgiving algorithm that can perform a modest amount
of feature selection due to its subsampling [9, 19]. In scikit-learn, there are
both regression and classification modes of Random Forest [29]. As Valence
can be treated as both a class or an ordinal value, we tried both methods.
Since regression provides additional insight for the classifier, it often had slightly
higher scores. However, regression biases the kernel into averaging around the
mean of all the labels. The result of this is MILD Valences might be moved to
be slightly more MODERATE and vice-versa. When it comes to building the
ensemble, this small amount of drift can result in large classification errors if it
causes the ensemble’s vote to cross a rounding threshold. Our adaptation was
to train the Random Forest on the regression version of the problem. Then,
during inference, round the inferred value to the nearest Valence.

SVM Initialized AdaBoost (SVM-Init-ada). The novel technique we used on this
project is the initialization of AdaBoost learning process with SVM (SVM-Init-
AdaBoost classifier in our parlance). AdaBoost trains a sequence of estimators
one after another [16]. After each iteration, the training set is be reweighed;
documents that were just misclassified will have their weight increased, while

18

documents that were just classified correctly will have their weight decreased.
This forces the next classifier to correct the mistakes its predecessor made.
While AdaBoost is traditionally done a fast and weaker classifier such as Naive
Bayes, any kernel can be used.

In other project, SentiMetrix has had success by introducing a single round
of a slow and strong classifier as a seed for AdaBoost [40]. As Support Vector
Machines was one of our better classifiers and provides a meaningful decision
function, it works well as the bootstrapping classifier and provides an anchor
for the weak classifiers. We modified the AdaBoost process as follows:

1. Step 1: Run Linear kernel SVM classifier on input data.

2. Step 2: Analyze kernel decision function to reweigh document weights

3. Step 3. . . 52: Run Näıve Bayes classification 49 times, reweighing docu-
ment weights after every iteration

On the input N-GRID challenge data, linear kernel SVM produced better
accuracy results than a single Näıve Bayes run. This allowed our modification
of AdaBoost to start with a sufficiently accurate bootstrap. This additional
accuracy gained on the first step has proven to be a core factor in the overall
accuracy of this classifier, as one of its runs wound up being the best individual
classifier in our battery.

8.2. Data Views

Each of or 22 classifiers was separately trained on nine different data views
described in Table 10. A data view is a collection of features onto which the
data is projected prior to being supplied to the classifier. Different subsets of
features were selected due to their distinct origins, and the desire of our team
to see if certain minimalistic sets of features contain enough information for
training the classifiers.

Two of the nine data views listed, ANOVA-wordvector34 (the 34 Word2Vec
features that passed our ANOVA significance tests) and WordVector (all 300
Word2Vec features) yielded abysmal accuracy for all classifiers, and were elimi-
nated from further consideration.

Of the remaining seven data views one, Full, represents the entire collection
of features selected during the process described in Section 7, five are its subsets,
and one, TF-IDF is the complete set of tf-idf vectors representing the textual
portion of each record. The subsets of the Full data view were selected to
represent different categories of features (CARs, Numeric4) as well as the best
features that passed a specific test: χ2, ANOVA or Multiple Information Gain.
We experimented briefly with top 100 and top 75 best features for each of the
tests, but settled on top 50, as this provided better accuracy.

4The name of this view is a bit of a misnomer, and is kept for historical reasons. This view
includes both numeric and categorical features that were present in the original dataset, as
well as constructed using cTAKES, SentEmotion, and LIWC toolkits.

19

No. Label Explanation Size
1 Full All features that passed filtering 788
2 Numeric All numeric (and categorical) filtered 125
3 CARs All CAR features 628
4 TF-IDF All tf-idf unigram features 8033
5 WordVector All Word2Vec features 300
6 Chi-square-best50 50 features with highest χ2 value 50
7 ANOVA-best50 50 features with highest ANOVA F-scores 50
8 MIG-best50 50 features with best MIG values 50
9 ANOVA-wordvector34 Word2Vec features that passed ANOVA 34

Table 10: Different data views used for classifier training.

No. Name Algorithm View
1 MNB-CARs MNB CARs
2 RF-full RF Full
3 RF-reg-full RF-reg Full
4 RF-reg-clf-full RF-reg-clf Full
5 Lin-SVM-chi2-best Lin-SVM chi2-square-best50
6 Lin-SVM-anova-best Lin-SVM ANOVA-best50
7 RBF-SVR-mig-best RBF-SVR MIG-best50
8 SVM-Init-Ada-CARS SVM-Init AdaBoost Rules
9 D&W-num Deep & Wide Numeric
10 DNN-full DNN Full

Table 11: Abbreviated names for classifiers for the next sections

As a result, at the end of the process we had a total of 22× 7 = 154 trained
(classifier,data view) pairs to go through. As a final preprocessing step, we
normalized the data view as appropriate for each classifier. For most classifiers,
the normalization centered each feature and scaled it to have unit standard
deviation using the interquartile range. For classifiers that cannot use negative
numbers, such as Multinomial NB, we did the above normalization and then
rescaled the data in the range of [0, 1]. This was accomplished with scikit-learn’s
RobustScaler and MinMaxScaler, respectively [29].

8.3. Classifier Training and Evaluation

For each classifier – data view pair we used 10-fold Cross Validation across
the entire training set of 433 data points from both the official training set and
the additional annotated by 1 set, using a seeded stratified method provided by
scikit-learn. For evaluating the pipelines, we performed a 10-fold Train & Predict
using the best hyper-parameters from the previous step across the organizer-
recommended 325 training files. These predictions were eventually fed into the
Ensemble Creation procedures.

Of the 154 total runs, we eventually chose 20 best learners to use in the
next step: ensemble training. Of these 20 runs, 10 runs shown in Table 11

20

RF-reg-full Pred NONE Pred MILD Pred MODERATE Pred SEVERE
True NONE 13 28 4 0
True MILD 3 94 33 0
True MODERATE 0 16 60 6
True SEVERE 0 4 49 15
Lin-SVM-chi2-best Pred NONE Pred MILD Pred MODERATE Pred SEVERE

True NONE 28 13 4 0
True MILD 11 103 13 3
True MODERATE 1 18 41 22
True SEVERE 1 2 21 44
RBF-SVR-mig-best Pred NONE Pred MILD Pred MODERATE Pred SEVERE

True NONE 17 25 3 0
True MILD 10 90 30 0
True MODERATE 1 26 43 12
True SEVERE 1 1 47 19
D&W-num Pred NONE Pred MILD Pred MODERATE Pred SEVERE

True NONE 27 17 1 0
True MILD 13 84 25 8
True MODERATE 3 17 41 21
True SEVERE 1 4 20 43
SVM-Init-Ada-CARS Pred NONE Pred MILD Pred MODERATE Pred SEVERE

True NONE 30 2 13 0
True MILD 9 96 21 4
True MODERATE 1 16 58 7
True SEVERE 0 2 14 52
MNB-CARs Pred NONE Pred MILD Pred MODERATE Pred SEVERE

True NONE 31 14 0 0
True MILD 16 103 3 8
True MODERATE 5 33 34 10
True SEVERE 1 6 5 56

Table 12: Individual Confusion Matrices on the 325 document training set for the 6 Classifiers
in the Competition-Winning Ensemble.

21

RF-reg-full Precision Recall MAE
NONE 0.812 0.289 0.733
MILD 0.662 0.723 0.824
MODERATE 0.411 0.732 0.809
SEVERE 0.714 0.221 0.738
Lin-SVM-chi2-best Precision Recall MAE

NONE 0.683 0.622 0.844
MILD 0.757 0.792 0.885
MODERATE 0.519 0.500 0.744
SEVERE 0.638 0.647 0.863
RBF-SVR-mig-best Precision Recall MAE

NONE 0.586 0.378 0.757
MILD 0.634 0.692 0.787
MODERATE 0.350 0.524 0.745
SEVERE 0.613 0.279 0.739
D&W-num Precision Recall MAE

NONE 0.614 0.600 0.859
MILD 0.689 0.646 0.793
MODERATE 0.471 0.500 0.732
SEVERE 0.597 0.632 0.848
SVM-Init-Ada-CARS Precision Recall MAE

NONE 0.750 0.667 0.793
MILD 0.828 0.738 0.854
MODERATE 0.547 0.707 0.848
SEVERE 0.825 0.765 0.912
MNB-CARs Precision Recall MAE

NONE 0.585 0.689 0.896
MILD 0.660 0.792 0.866
MODERATE 0.810 0.415 0.677
SEVERE 0.757 0.824 0.902

Table 13: Multi-class Precision, Recall and MAE on the 325 document training set for the
6 Classifiers in the Competition-Winning Ensemble. Per-class MAE is normalized with the
assumption that all predictions are maximally incorrect for each class.

Classifier MA-MAE ROC-AUC R2

RF-reg-full 0.776 0.683 0.554
Lin-SVM-chi2-best 0.834 0.765 0.521
RBF-SVR-mig-best 0.757 0.657 0.476
D&W-num 0.808 0.721 0.394
SVM-Init-Ada-CARS 0.851 0.811 0.515
MNB-CARs 0.835 0.773 0.459

Table 14: Summary metrics on the 325 document training set for each of the 6 Classifiers in the
Competition-Winning Ensemble. All applicable metrics are macro-averaged when necessary.
Higher is better.

22

Classifier Precision Recall F1-Score Accuracy
RF-reg-full 0.650 0.491 0.495 0.560
Lin-SVM-chi2-best 0.649 0.640 0.644 0.665
RBF-SVR-mig-best 0.546 0.468 0.481 0.520
D&W-num 0.593 0.595 0.593 0.600
SVM-Init-Ada-CARS 0.738 0.719 0.724 0.726
MNB-CARs 0.703 0.680 0.673 0.689

Table 15: Summary metrics on the 325 document training set for each of the 6 Classifiers in the
Competition-Winning Ensemble. All applicable metrics are macro-averaged when necessary.
Higher is better.

participated in the five best ensembles (see Section 9.) For each run, we show
the classifier used, the data view on which it ran and the abbreviation we use
in this section and in Section 9 to refer to it.

For the sake of space, we limit the demonstration and discussion of the results
of the individual classifiers to the six classifiers from Table 11 which constituted
our top performing classification ensemble. These classifiers are:

1. RF-ref-full: the Random Forest regression run on the Full data view.

2. Lin-SVM-chi2-best: Linear kernel SVM classifier run on the 50 best features
selected by the χ2 test.

3. RBF-SVR-mig-best: Radial basis function kernel SVM regressor run on the
top 50 best features selected by the mutual information gain test.

4. D&W-num: the TensorFlow’s Deep and Wide classifier run on the numeric
and categorical features.

5. SVM-Init-Ada-CARs: SVM-initialized Adaboost running on our CAR fea-
tures.

6. MNB-CARs: Multinomial Näıve Bayes running on our CAR features.

Table 12 contains the confusion matrices for these six runs, Table 13 shows
precision, recall and MAE for each class, while Tables 14 and 15 document the
overall accuracy metrics: MA-MAE, RoC-AUC and the R2 metrics (Table 14),
and precision, recall, f-score and accuracy (Table 15). We discuss the work of
individual classifiers below.

Our RandomForest regression run on the full data view (RF-reg-full) tended
to over-predict MILD and MODERATE valences at the expense of NONE and
SEVERE, however, it contained excellent separation between the NONE/MILD,
and MODERATE/SEVERE pairs of valences, with only MILD⇒MODERATE false
positives being of concern. While this run had the second lowest MA-MAE value
out of our six runs, it should be noted (see Section 9) that this is the only run
that participated in all final ensembles.

The linear kernel SVM classifier running on our top 50 χ2 features (Lin-
SVM-chi2-best) has the third highest MA-MAE and has produced an excellent
confusion matrix, with majority of NONE and SEVERE conditions being classi-
fied correctly, and with very few “costly” misses.

23

The SVM regressor with RBF kernel running on our top 50 Mutual Informa-
tion Gain features (RBF-SVR-mig-best) had the lowest performance of these six
runs (although was still among the better classifiers overall). It over-predicted
the MODERATE class, and had some trouble distinguishing MODERATE and
MILD valences. It also was very strict at predicting NONE and SEVERE valences.

TensorFlow’s Deep and Wide classifier, run on all our numeric and cate-
gorical attributes, excluding CAR and Word2Vec attributes ((D&W-num) had
no significant distinctive features as compared to other runs. It did the worst
on properly capturing MILD valences (MILD recall), and tended to admit more
”big” mistakes (misclassifications two or more classes apart) than some other
methods. But it kept the overall number of misclassified cases reasonable, and
hence earned a MA-MAE in excess of 0.8.

Our overall best single run came from our own Adaboost classifier trained
on a single round of SVM followed by 49 rounds of Näıve Bayes applied to the
dataset consisting solely of CAR attributes (SVM-Init-Ada-CARs, see Section
8.1). This classifier excelled almost everywhere, giving by far the most accurate
predictions of SEVERE valence and minimizing false positives. The only “weak
spot” for this method came from improperly classifying 13 cases with valence
of NONE as MODERATE. However, as this was a clear outlier prediction among
our six runs (the other runs predicted anywhere from 0 to 4 cases this way),
this miss was effectively eliminated in the followup ensembles.

The final classifier run, Multinomial Näıve Bayes run on the same data view
of CAR attributes (MNB-CARs), edged the Lin-SVM-chi2-best run by a hair to
give us our second best single run MA-MAE of 0.835. It got the largest number
of both NONE and SEVERE true positives, as well as tying the Lin-SVM-chi2-
best for the largest number of MILD true positives, only stumbling a bit on the
MODERATE valence, where it had a very high precision, but low recall.

9. Step 6: Ensemble Learning

From our prior research [27, 2], we know that ensembles frequently beat
vanilla classifiers. As a consequence, we decided to try out ensembles on our
data. From our set of 154 classifier data view runs, we selected the 20 best
runs (six of which were presented in detail in Section 8). We constructed a
variety of ensembles of size 2 to 9 classifiers in each from these runs, and via
attrition zeroed in on the best performing ones. Our measure of performance
of an ensemble was straightforward:

the MA-MAE of the ensemble must be higher than 0.851, the MA-
MAE of our best standalone method (SVM-Init-Ada-CARS).

Our classifier ensembles were constructed in a straightforward way. Each
ensemble consisted of a subset of classifiers from our list of 20 best runs. Each
classifier in the ensemble received an equal vote share (i.e., we did not attempt
to weigh classifiers differently). We devised six different voting schemes to de-
termine the ensemble prediction of the Valence based on the predictions of the
constituent classifiers. These voting schemes are defined below.

24

Majority voting. A value of the Valence is selected if it was predicted by the
majority (at least half) of classifiers in the ensemble. If such value does not
exist, this method picks the most common Valence in the training set5.

Plurality voting. Given a parameter min votes, a specific value of the Valence
is selected if it is the most common value and more than min votes classifiers
in the ensemble predict it. If such value does not exist, this method picks the
most common Valence in the training set.

Majority favor MODERATE voting. This scheme selects the majority value of
predicted Valence if one exists, the same way the majority scheme works. How-
ever, if a majority value does not exist, this voting scheme favors Valence =
MODERATE: it selects this value if at least one classifier predicts it. If no clas-
sifier predicts Valence = MODERATE, this scheme defaults to the most common
Valence in the training set.

Plurality favor MODERATE voting. This scheme selects the plurality value of
Valence if it is predicted by more than min votes votes. If such value does not
exist, but at least one classifier predicts Valence = MODERATE, this scheme
selects this value. If no Valence = MODERATE prediction exists in the ensemble,
the voting scheme defaults to the most common Valence in the training set.

Simple Round voting. This voting scheme simply finds the average prediction
value among the ensemble classifiers, and rounds it to the nearest Valence value.

Tuned Round voting. Our most complicated voting scheme acts like another
hyper-parametrization search.

The general idea behind this method is fairly straightforward, although the
implementation does require some explanation. The simple round voting scheme
assumes that the average valence of 2.6 (out of 3) points to the class Valence
= SEVERE, as 2.6 is greater than the midpoint between the numeric Valence
scores for MODERATE and SEVERE classes. However, Valence (despite how we
choose to treat it on occasion) is not a continuous variable, but an ordinal one.
Therefore, 0.5, 1.5 and 2.5 do not have to be the threshold values separating the
neighboring valence classes. What should these values be? Well, we can treat
this as yet another hyperparameter tuning problem, and find such values of the
three threshold parameters that optimize the MA-MAE score.

For our experiments we used the following threshold sets, which give rise to
a search space of 343 possibilities.

• NONE/MILD threshold: 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75

• MILD/MODERATE threshold: 1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.75

• MODERATE/SEVERE threshold: 2.25, 2.3, 2.4, 2.5, 2.6, 2.7, 2.75

5In our training set, this was Valence=MILD.

25

To run all our ensembles through this voting mechanism we would have to
generate in excess of 13.3 million combinations. To achieve this, the tuned round
voting ensemble algorithm was parallelized onto a c4.4xlarge Cloud Instance on
Amazon AWS. In addition, the mean votes of each of the 38,760 candidate
ensembles were pre-computed using OpenBLAS [47]. Nonetheless, the entire
computation took 8 hours with classifier ensembles of no larger than 6, whereas
all Majority and Plurality schemes up to 9 completed on a single core in less
time.

9.1. Submitted Ensembles

Among the multitude of voting ensembles, we selected the five top performers
(all providing us with 1.5 – 3% of lift over the best individual classifier) shown
in Table 16. Notably, all these ensembles used the tuned voting ensemble voting,
confirming to us that the tuning of the thresholds separating the neighboring
Valence classes was a useful procedure. The MA-MAE scores reported in Table
16 were computed over the 325-record training set.

As we could only submit three guesses, we had to make our final choices
from these five ensembles. We selected ensembles A, B and C for official
submission.

Ensemble B consisted only of the Random Forest regressor run on the full
data view, and our most accurate standalone classifier, SVM-initialized Näıve
Bayes AdaBoost on the Class Association Rules data view. It also was the best
performer on the training set.

Ensembles A and C were selected to diversify our pool of guesses. Ensemble
A was selected as the most accurate ensemble that did not feature classifiers
trained on Class Association Rules alone. We chose Ensemble C over Ensemble
E because in a secondary run on the 108 annotated by 1 records Ensemble E had
a drop in accuracy that worried us. Additionally, Ensemble C was far better
than the other ensembles in properly recognizing the Valence = SEVERE class.

Table 17 shows the confusion matrices of the three submitted ensembles on
the 325-record training set. Table 19 shows the precision, recall and MAE for
each Valence class for each ensemble. Table 19 shows the MA-MAE as well as
the ROC-AUC and the R2 metrics. Table 20 shows overall precision, recall,
f-measure and accuracy of the ensembles.

9.2. Test Results

The results of running our three submitted ensembles on the 216-record test
set are shown in Tables 21—24. Table 21 shows the confusion matrices of the
three ensembles on the test set.

It is worth immediately noting, by comparing confusion matrices in Table
21 to those in Table 17 (for the training set), that all three ensembles overall
performed as expected and did not overfit the training set by much. We note
that all three ensembles excelled at not making huge mistakes: they had 10,
11, and 7 data points (respectively) with classification error of 2 or more. This
compares with 7, 5, and 8 such data points misclassified on (somewhat larger)
training set.

26

Name Classifiers Voting MA-MAE
RF-full
RF-reg-clf-full

A RF-Reg-full Tuned round 0.865
Lin-SVM-chi2-best (0.7,1.6,2.25)
Lin-SVM-anova-best
DNN-full

B RF-reg-full Tuned round 0.882
SVM-Init-Ada-CARS (0.7,1.7,2.3)
RF-Reg-full
Lin-SVM-chi2-best

C RBF-SVR-mig-best Tuned round 0.865
D&W-num (0.75,1.5,2.25)
SVM-Init-Ada-CARS
MNB-CARs
RF-reg-full

D Lin-SVM-chi2-best Tuned round 0.850
Lin-SVM-ANOVA (0.5,1.3,2.3)
DNN-full
RF-Reg-full

E SVM-Init-Ada-CARS Tuned round 0.866
DNN-full (0.7,1.4,2.4)
Lin-SVM-chi2-best

Table 16: Top five voting ensembles. The MA-MAE value is computed on the 325-record
training set.

Ensemble A Pred NONE Pred MILD Pred MODERATE Pred SEVERE
NONE 34 10 1 0
MILD 9 102 17 2
MODERATE 1 15 48 18
SEVERE 0 3 19 46
ENSEMBLE B Pred NONE Pred MILD Pred MODERATE Pred SEVERE

NONE 29 15 1 0
MILD 8 116 4 2
MODERATE 1 20 54 7
SEVERE 0 1 20 47
ENSEMBLE C Pred NONE Pred MILD Pred MODERATE Pred SEVERE

NONE 31 14 0 0
MILD 10 107 10 3
MODERATE 2 21 42 17
SEVERE 0 3 10 55

Table 17: Confusion Matrices on the 325 document training set for the 3 submitted Ensembles

27

ENSEMBLE A Precision Recall MAE
NONE 0.773 0.756 0.911
MILD 0.785 0.785 0.885
MODERATE 0.565 0.585 0.787
SEVERE 0.697 0.676 0.877
ENSEMBLE B Precision Recall MAE

NONE 0.763 0.644 0.874
MILD 0.763 0.892 0.939
MODERATE 0.684 0.659 0.823
SEVERE 0.839 0.691 0.892
ENSEMBLE C Precision Recall MAE

NONE 0.721 0.689 0.896
MILD 0.738 0.823 0.900
MODERATE 0.677 0.512 0.744
SEVERE 0.733 0.809 0.922

Table 18: Multi-class Precision, Recall and MAE on the 325 document training set for the 3
submitted Ensembles. Per-class MAE is normalized with the assumption that all predictions
are maximally incorrect for each class.

Ensemble MA-MAE ROC-AUC R2

A 0.865 0.795 0.622
B 0.882 0.823 0.694
C 0.865 0.801 0.629

Table 19: Summary metrics on the 325 document training set for each of the 3 submitted
Ensembles. All applicable metrics are macro-averaged when necessary. Higher is better.

Ensemble Precision Recall F1-Score Accuracy
A 0.705 0.701 0.703 0.708
B 0.762 0.722 0.738 0.757
C 0.717 0.708 0.709 0.723

Table 20: Summary metrics on the 325 document training set for each of the 3 submitted
Ensembles. All applicable metrics are macro-averaged when necessary. Higher is better.

28

ENSEMBLE A Pred NONE Pred MILD Pred MODERATE Pred SEVERE
NONE 20 10 1 0
MILD 12 66 5 3
MODERATE 2 16 23 5
SEVERE 1 3 10 39
ENSEMBLE B Pred NONE Pred MILD Pred MODERATE Pred SEVERE

NONE 20 11 0 0
MILD 4 68 13 1
MODERATE 2 19 21 4
SEVERE 0 8 7 38
ENSEMBLE C Pred NONE Pred MILD Pred MODERATE Pred SEVERE
NONE 21 10 0 0
MILD 7 64 13 2
MODERATE 2 12 29 3
SEVERE 0 3 9 41

Table 21: Confusion Matrices on the 216 document hidden test set for the 3 submitted
Ensembles

ENSEMBLE A Precision Recall MAE
NONE 0.571 0.645 0.871
MILD 0.695 0.767 0.867
MODERATE 0.590 0.500 0.739
SEVERE 0.830 0.736 0.881
ENSEMBLE B Precision Recall MAE

NONE 0.769 0.645 0.882
MILD 0.642 0.791 0.890
MODERATE 0.512 0.457 0.707
SEVERE 0.884 0.717 0.855
ENSEMBLE C Precision Recall MAE

NONE 0.700 0.677 0.892
MILD 0.719 0.744 0.861
MODERATE 0.569 0.630 0.794
SEVERE 0.891 0.774 0.906

Table 22: Multi-class Precision, Recall and MAE on the 216 document hidden test set for the
3 submitted Ensembles. Per-class MAE is normalized with the assumption that all predictions
are maximally incorrect for each class.

Ensemble MA-MAE ROC-AUC R2

A 0.837 0.776 0.534
B 0.833 0.763 0.539
C 0.863 0.799 0.629

Table 23: Summary metrics on the 216 document hidden test set for each of the three submit-
ted Ensembles. All applicable metrics are macro-averaged when necessary. Higher is better.

29

Ensemble Precision Recall F1-Score Accuracy
A 0.671 0.662 0.664 0.685
B 0.702 0.652 0.671 0.681
C 0.720 0.706 0.712 0.718

Table 24: Summary metrics on the 216 document hidden test set for each of the three submit-
ted Ensembles. All applicable metrics are macro-averaged when necessary. Higher is better.

All three ensembles exhibited very similar performance on the 31 records
with Valence = NONE. Ensemble A tended to underrate MILD cases, prefer-
ring to predict Valence = NONE when it made a mistake. Ensembles B and C
went in the other direction, overrating the majority of mistakes on cases with
Valence=MILD.

It is on cases with Valence=MODERATE and Valence=SEVERE Ensemble C
showed a clearly better performance, both in terms of recall (correctly classifying
29 out of 46 MODERATE cases and 41 out of 53 SEVERE cases), and in terms of
precision (keeping it above 50% for Valence=MODERATE, and allowing for only
5 false positives for Valence=SEVERE). These numbers, especially the precision
for the Valence=SEVERE class wound up actually being better than the training
set results (where Ensemble C had 20 false positives and 55 true positives in this)!

Table 22 shows precision, recall and MAE for each valence class for each en-
semble. Table 23 shows the overall MA-MAE, ROC-AUC and R2 metrics for each
ensemble, while Table 24 summarizes precision, recall, f1-score and accuracy.

As seen from Table 22, Ensemble C wound up being the top scorer among
our submissions. As we learned shortly after the submission period closed,
Ensemble C wound up being the best overall predictor of patient condition severity
in the entire CEGS N-GRID 2016 Shared Task in Clinical Natural Language
Processing (Track 2).

10. Conclusion and Future Work

The CREATEframework we built for Track 2 of the CEGS N-GRID 2016
Shared Task in Clinical Natural Language Processing introduces a number of
novel features in the field of automated analysis of medical records. The core
novel features of CREATE that proved to be crucial to our success included:

• Enhanced features. An aggressive approach to enhancing the initial pa-
tient evaluation records provided to us with a multitude of features from
diverse sources. Almost all of our feature enhancement efforts contributed
non-trivial amounts of features to the final feature set. In addition to tra-
ditional features used for medical data analysis, such as diagnosis signals
and sentiment, we have added novel categories of features: cumulative
scores, commonality features, and medication use features, that proved
important.

• Use of Class Association Rules as features. Class Association Rules
are often used by themselves to classify underlying data. In CREATE we

30

“stacked” the learning processes by using a set of CARs with complete
five-fold6 coverage of our training set as additional features in our dataset,
and using both the CARs-only and combined feature sets in subsequent
classification and regression tasks.

• Feature Pruning and Data View construction. Our aggressive bat-
tery of feature pruning tests eliminated redundant or useless features. In
addition, rather than using the full set of features for each classification
tasks, we attempted to zero in on useful subsets of the features, either by
feature type (all CAR features, all non-CAR features) or by the scores
assigned to them by some of our pruning tests (features with highest χ2,
mutual information gain, ANOVA F −value). Separation of our data into
these data views allowed us to better train our classifiers: the winning
ensemble of six classifiers used four out of seven data views. The fact
that some of the classifiers in the ensemble were trained on disjoint sets
of features helped prevent overfit in the ensemble.

• Adaptations of classifiers. We adapted two classifiers to better work
with the data. The Random Forest regressor with classification inference
adaptation was made specifically to account for the nature of the target
Valence class attribute and resulted in improved performance of the Ran-
dom Forest classifier. This regressor was featured in one of the three of our
final submissions. The SVM-Initialized Adaboost by far outperformed all
individual classifiers, and featured prominently in our winning ensemble.

• Tuned Round Voting scheme for ensembles of classifiers. While
our classifier ensembles were formed in a simple way by giving each clas-
sifier an equal vote in each outcome, the tuned round voting scheme for
deciding the results of the vote, which was featured in all five best classi-
fier ensembles was the third “stacked” learner in CREATE: it performed
the hyper-parameter tuning to determine the best way to separate aver-
aged (and therefore no longer integer) values between neighboring Valence
classes. As seen from Table 16, the class thresholds learned by this method
were different than the default values in almost all cases, which, by virtue
of the method, improved the final accuracy of the ensembles.

Future Work. Word2Vec and other emerging text embedding NLP strategies
have gained a large amount of notariety since the release of TensorFlow. Al-
though Google’s GoogleNews vectors worked well, utilizing PubMed’s massive
database of medical text would be a more domain-aware embedding strategy
and training our own PubMedWordVectors would likely increase the amount of
topic coherency. A second area of improvement is using of deep learning al-
gorithms such as LSTMs from TensorFlow in an attempt to find convoluted,
non-linear feature interactions.

6Meaning that each record in the training set was covered by at least five discovered Class
Association Rules.

31

Finally, the CREATE framework currently exists purely offline and is driven
by a command line interface. Developing a more user-friendly and automated
pipeline would allow SentiMetrix to more easily extend the applicability of the
framework to a larger domain of medical records analysis, as well as to any data
analytical tasks that involve large combined structured data and textual data
feature sets.

Acknowledgements

Our team’s work was supported by US Army Medcom/TATRC grant W81XWH-
13-C-0030. The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Pro-
cessing was sponsored in part by two NIH awards: NIH P50 MH106933 (PI: Isaac
Kohane) and NIH 4R13LM011411 (PI: Ozlem Uzuner).

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D.G. Murray, B. Steiner, P.A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y.
Yu, X. Zheng (2016) TensorFlow: A System for Large-Scale Machine Learning.
in Proc. OSDI 2016, pp. 265–283

[2] B. An, H. Chen, N. Park, and VS Subrahmanian. (2016) MAP: Frequency-Based
Maximization of Airline Profits based on an Ensemble Forecasting Approach, in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 421–430,

[3] R.A. Baeza-Yates, B. Ribeiro-Neto. (1999) Modern Information Retrieval, Ad-
dison Wesley.

[4] S. Banaszak, V. Kagan, A. Stevens, and V.S. Subrahmanian. (2013). COP-
TADS:Clinical Online PTSD and TBI Analysis and Detection System, in Proc.
Workshop on Visual Analytics in Healthcare’2013, pp. 86-89.

[5] J. C Bezdek, R. J. Hathaway, R.E. Howard, C.A Wilson, M.P Windham. (1987).
Local convergence analysis of a grouped variable version of coordinate descent,
in Journal of Optimization Theory and Applications, pp. 471–477.

[6] S. Bird, E. Klein, E. Loper. (2009) Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit, O’Reilly Media, June 2009.

[7] R. Boulton, M. Porter. (2001) Snowball. http://snowballstem.org.

[8] B.E.P. Box. (1953). Non-Normality and Tests on Variances. Biometrika,
Biometrika Trust, Vol. 40 (3/4), pp. 318-–33

[9] L. Breiman. (2001). Random Forests. Machine Learning, Vol. 45 (1): pp. 5-–32.

[10] Eli Bressert. (2012)SciPy and NumPy: Examples to Jumpstart your Scientific
Python Programming, O’Reilly Media.

32

[11] T. Chen, C. Guestrin (2016) XGBoost: A Scalable Tree Boosting System, in
Proc. KDD 2016, pp. 785–794

[12] E. Choi, M.T. Bahadori, E. Searles, C. Coffey, M. Thompson, J. Bost, J. Tejedor-
Sojo, J. Sun. (2016). Multi-layer representation learning for medical concepts
in 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (ACM 2016). pp. 1495–1504.

[13] C. Cortes, V. Kuznetsov, M. Mohri. Learning Ensembles of Structured Pre-
dictions Rules in Proceedings of the 52nd Annual Meeting of Association for
Computational Linguistics (ACL 2014). pp. 1–12.

[14] C. Cortes, V. Vapnik (1995) Support-Vector Networks, Machine Learning Vol.
20(3), pp. 273–297

[15] J. Dickerson, V. Kagan and V.S. Subrahmanian. (2014) Using Sentiment to
Detect Bots on Twitter: Are Humans more Opinionated than Bots?, in Proc.
ACM/IEEE Intl. Conf. on Advances in Social Network Analysis and Mining
(ASONAM’2014), Beijing, pp. 620-627, Aug. 2014 (industrial papers session).

[16] Y. Freund, and R. E. Schapire. (1999) A Short Introduction to Boosting, Journal
of Japanese Society for Artificial Intelligence, Vol. 14(5):771-780, September,
1999.

[17] G. H. Golub, R. Christian. (1970). Singular value decomposition and least
squares solutions in Numerische mathematik 14.5. pp. 403-420.

[18] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Gen-
eration. In Proc. Conf. on the Management of Data (SIGMOD’00, Dallas, TX).
ACM Press, New York, NY, USA 2000.

[19] T.K. Ho (1995). Random Decision Forests. In Proceedings of the 3rd Interna-
tional Conference on Document Analysis and Recognition, Montreal, QC, 14–16
August 1995. pp. 278–282.

[20] V. Kagan, E. Rossini, and D. Sapounas. (2013) Sentiment analysis for PTSD
signals. New York: Springer Science + Business Media.

[21] V. Kagan, A. Stevens, and V. S. Subrahmanian (2015) Using Twitter Sentiment
to Forecast the 2013 Pakistani Election and the 2014 Indian Election. IEEE
Intelligent Systems Vol. 30(1): pp. 2—5

[22] R. W. Hamming. (1950). Error detecting and error correcting codes in Bell
System Technical Journal. Vol 29 (2): 147–160.

[23] W. Li, J. Han, J. Pei (2001) CMAR: Accurate and Efficient Classification Based
on Multiple Class-Association Rules. IEEE Computer Society ICDM ’01: pp.
369–376

[24] B. Liu, W. Hsu, Y. Ma (1998) Integrating Classification and Association Rule
Mining. Association for the Advancement of Artifical Intelligence KDD: 98 Pro-
ceedings: pp. 80–86

33

[25] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean (2013) Distributed
Representations of Words and Phrases and their Compositionality. in Proc. NIPS
2013 pp. 3111–3119.

[26] T. Mikolav, Q. Le (2014) Distributed Representations of Sentences and Docu-
ments. https://cs.stanford.edu/ quocle/paragraph vector.pdf

[27] C.Kang, N. Park,B.A. Prakash, E. Serra, and VS Subrahmanian. (2016) Ensem-
ble Models for Data-driven Prediction of Malware Infections, in Proceedings of
the Ninth ACM International Conference on Web Search and Data Mining, pp.
583–592.

[28] E. Naeseth (2009) Python FP-Growth Github. MIT Licence.
https://github.com/enaeseth/python-fp-growth

[29] F.V. Pedregosa. (2011) Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12: 2825-2830.

[30] J.W. Pennebaker. (2001) Linguistic Inquiry and Word Count: LIWC 2001.
Lawrence Erlbaum Associates.

[31] J. Pennington, R. Socher, C. D. Manning. (2014). Glove: Global Vectors for
Word Representation in EMNLP. Vol: 14. pp. 1532–1543.

[32] J.R. Quinlan. (1992) C4.5 Programs for Machine Learning, Morgan Kaufmann.

[33] J.R. Quinlan (2010) Rulequest Research Data Mining Tools.
http://www.rulequest.com

[34] R. Rehurekm, P. Sojka. (2010). Software Framework for Topic Modelling with
Large Corpora in Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. pp. 45–50.

[35] K. Rajeswari. Feature Selection by Mining Optimized Association Rules based
on Apriori. (2015) in International Journal of Computer Applications. 119(20).

[36] B.C. Ross. (2014) Mutual Information between Discrete and Continuous Data
Sets. PLoS ONE, Volume 9(2): e87357.

[37] D.L. Roter. (2011) The Expression of Emotion Through Nonverbal Behavior
in Medical Visits: Mechanisms and Outcomes. Journal of General Internal
Medicine, 21(Suppl 1), S28–S34.

[38] G.K. Savova, J.J. Masanz, Ph.V. Ogren, J. Zheng, S. Sohn, K.C. Kipper-Schuler,
C.G. Chute. (2010) Mayo clinical Text Analysis and Knowledge Extraction Sys-
tem (cTAKES): architecture, component evaluation and applications. Journal
of the American Medical Informatics Association , 17(5), pp. 507-513.

[39] R. Socher, J. Bauer, C.D. Manning and A.Y. Ng. (2013) Parsing With Compo-
sitional Vector Grammars. in Proceedings of ACL’2013.

[40] V. S. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman,
L. Zhu, E. Ferrara, A. Flammini, F. Menczer, R. Waltzman, A. Stevens, A.
Dekhtyar, S. Gao, T. Hogg, F. Kooti, Y. Liu, O. Varol, P. Shiralkar, V. G. Vinod
Vydiswaran, Q. Mei, T. Huang. (2016) The DARPA Twitter Bot Challenge.
IEEE Computer, Issue No. 06, June 2016, vol. 49, pp. 38–46.

34

[41] K. Sparck Jones. (1972). A Statistical Interpretation of Term Specificity and Its
Application in Retrieval. Journal of Documentation, Vol 28, pp. 11–21

[42] V.S. Subrahmanian, S. Venkatramana, D. Reforgiato. (2008). AVA: Adjective-
verb-adverb combinations for sentiment analysis in IEEE Intelligent Systems.
Vol 23(4). pp. 43–50.

[43] O. Uzuner, A. Stubbs, M. Filannino, T. Cai, S. Churchill, I. Kohane, Th.H. Mc-
Coy, R.H. Perlis, P. Szolovits, U. Vaidyanathan, Ph. Wang. (2016) Announce-
ment of Data Release and Call for Participation 2016 CEGS N-GRID Shared-
Tasks and Workshop on Challenges in Natural Language Processing for Clinical
Data, https://www.i2b2.org/NLP/RDoCforPsychiatry/.

[44] S. Walt, S. Colbert, G. Varoquaux The NumPy Array: A Structure for Efficient
Numerical Computation IEEE Computer Society in Computing in Science &
Engineering Vol 13(2), pp 22–30

[45] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLach-
lan, A.F.M. Ng, B. Liu, Ph.S. Yu, Z-H. Zhou, M. Steinbach, D.J. Hand, D.
Steinberg. (2008) Top 10 algorithms in data mining. Knowl. Inf. Syst. Vol 14(1),
pp 1–37.

[46] F. Yates. (1934) Contingency table involving small numbers and the χ2 test.
Supplement to Journal of the Royal Statistical Society Vol 1(2): 217–235.

[47] Z. Xianyi, W. Qian, W. Saar OpenBLAS: An optimized BLAS library
http://www.openblas.net/

[48] Y. Xu, G.J.F. Jones, JT. Li, B. Wang, and CM. Sun. (2007) A study on mutual
information-based feature selection for text categorization Journal of Computa-
tional Information Systems, Vol. 3 (3). pp. 1007–1012.

35

